A very small intro to Bayesian Statistics

Rosana Zenil-Ferguson, Will Freyman, and Jordan Koch

University of Minnesota

Botany 2018

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

1. Set up a (probabilistic) model based on hypothesis of interest

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

1. Set up a (probabilistic) model based on hypothesis of interest

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

2. Condition that model on observed data

- 1. Set up a (probabilistic) model based on hypothesis of interest
- 2. Condition that model on observed data
- 3. Draw inferences, evaluate its fit and implications *Gelman et al. 2014 Bayesian Data Analysis. Third Edition*

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We are always interested in knowing the posterior distribution

What is a prior distribution $P(\theta)$?

In simple terms it is our hypothesis

What is a prior distribution $P(\theta)$?

In simple terms it is our hypothesis

It is subjective because it is an informed assumption

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In simple terms it is our hypothesis

It is subjective because it is an informed assumption

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• We need clarify how it is set up (elicit priors)

In simple terms it is our hypothesis

- It is subjective because it is an informed assumption
- We need clarify how it is set up (elicit priors)
- We usually set our hypothesis via parameters that are unknown and random

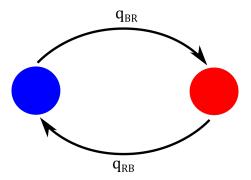
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hypothesis: Red flowers evolve into purple and viceversa

 $\theta = (q_{BR}, q_{RB})$

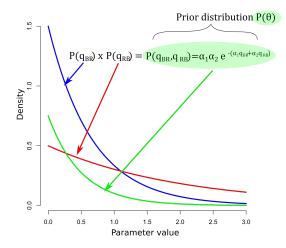
Hypothesis: Red flowers evolve into purple and viceversa

 $\theta = (q_{BR}, q_{RB})$



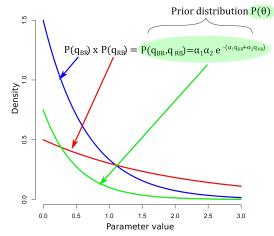
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The prior distribution: $P(\theta)$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

The prior distribution: $P(\theta)$



By selecting a blue exponential faster than the red we are implicitly saying that evolution from blue to red has happened more frequently than red to blue *D* is our data We go into our favorite herbarium, field site, or green house and we collect color of multiple species

How do we integrate our model θ and our data D ?

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Likelihood function: Probability of the sample given the hypothesis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 Likelihood function: Probability of the sample given the hypothesis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Is it a probability?

 Likelihood function: Probability of the sample given the hypothesis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Is it a probability?

- Likelihood function: Probability of the sample given the hypothesis
- Is it a probability? Yes for the sample. BUT NO! for the parameters
- In likelihood framework then the parameters are unknown but fixed

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Likelihood function: Probability of the sample given the hypothesis
- Is it a probability? Yes for the sample. BUT NO! for the parameters
- In likelihood framework then the parameters are unknown but fixed

(ロ) (同) (三) (三) (三) (○) (○)

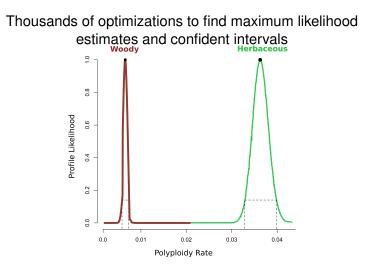
 Implications: parameters do not have a probability distribution, and it is more complicated to assess their uncertainty

Calculating the likelihood is computationally challenging

Thousands of optimizations to find maximum likelihood estimates and confident intervals

(ロ) (同) (三) (三) (三) (○) (○)

Calculating the likelihood is computationally challenging



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Where does the posterior come from?

Bayes theorem (conditional probabilities)

$$P(\theta|D) = \frac{P(\theta,D)}{P(D)} = \frac{P(D|\theta)P(\theta)}{P(D)}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Bayes theorem (conditional probabilities)

$$P(\theta|D) = \frac{P(\theta, D)}{P(D)} = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Why do we ignore P(D) and put a symbol \propto ?

$$P(\theta|D) \propto P(D|\theta) P(\theta)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bayes theorem (conditional probabilities)

$$P(\theta|D) = \frac{P(\theta,D)}{P(D)} = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Why do we ignore P(D) and put a symbol \propto ?

$$P(\theta|D) \propto P(D|\theta) P(\theta)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Because P(D) is the probability of the sample and does not contain information about $\boldsymbol{\theta}$

Making inferences with the posterior distribution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• The posterior distribution is **probability**.

Making inferences with the posterior distribution

- The posterior distribution is **probability**.
- Measures the uncertainty of the hypothesis after being confronted to data (update of my hypothesis)

(ロ) (同) (三) (三) (三) (○) (○)

Making inferences with the posterior distribution

- The posterior distribution is **probability**.
- Measures the uncertainty of the hypothesis after being confronted to data (update of my hypothesis)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

We need explore it thoroughly (MCMC quality).